City of Allentown Update

EPA/DEP Meeting June 14, 2016

Outline

Overview of Corrective Action Plan Development

Phase 1 Recap

Phase 2

Selection of Final Alternative

Blending vs. Flow Equalization

COA Corrective Action Plan Development

- Phase 1 current flows
 - Ten alternatives evaluated
 - Results presented in Phase 1 Report 1/13
- Phase 2 future flows
 - Two rounds of alternatives evaluations
 - Closely coordinated with the WLSP
 - Identify best "combined" solution

COA Phase I Corrective Action Plan Recap

- Fully calibrated model to 2008 flow data
- Modified-calibrated version to account for
 - high groundwater
- 10 Year Storm LOC
- COA Alternative 10
 - Combination of improvements

Zero overflows under both models

COA Phase 1 Alternative 10 Improvements

COA Phase 2 Corrective Action Plan

- Future 2040 flows
 - From 537 Plan Update
- 10 Year Storm LOC
- Close coordination with WLSP
 - WLSP alternatives have varying impact on peak flow to the KIWWTP
- Developed through two rounds of evaluations

COA Round 1 Alternatives Evaluation

- Bracketing approach used for Round 1 alternatives evaluation
 - Based on the three WLSP alternatives that generate the maximum to minimum range of flows to the KIWWTP
- WLSP Alternatives selected for bracketing
 - "Alternative 2" convey all flows to City
 - "Alternative 6" RDII removal and storage
 - "Alternative 12B" direct discharge
- Non-blending and blending alternatives

Alternatives 2, 6, 12 B Infrastructure Improvements Schematic

Round 2 Modeling and Alternatives Evaluations

- 2040 future flows consistent with Round 1
- Three flow conditions from WLSP:
 - "Alternative 1" Convey all flows to City
 - "Alternative 7" In-Line Storage
 - "Alternative 10" RDII Removal
- Modelling use to identify and size required improvements for each alternative

Round 2 – Alternative Selection

- Preliminary costs developed for each alternative
- Alternative 10 selected by the WLSP
 - The RDII Removal alternative

Peak Flow Comparison – Modified-Calibrated

Alternatives 10 Infrastructure Improvements Schematic

Improvements Necessary under Alternative 10

Improvements to City Owned Facilities

12,500,750

		CALIBRATED MODEL				MODIFIED - CALIBRATED MODEL			
DESCRIPTION OF ITEM OR ALTERNATIVE COMPONENT	UNITS and APPROX. QUANTITY	APPROX. SIZE	UNIT PRICE ¹		TOTAL PRICE	APPROX. SIZE	UNIT PRICE1		TOTAL PRICE
Trout Creek Parallel Sewer	6,900 LF	24-in	\$775	\$	5,348,000	24-in	\$775	\$	5,348,000
W. Tioga Street Sewer	1,500 LF	10-in	\$235	\$	353,000	10-in	\$235		353,000
		Subtota	City of Allentown Costs (Calibrated Model)	\$	5,701,000	Subtota (Mo	l City of Allentown Costs odified-Calibrated Model)	\$	5,701,000
MPH Auxiliary Modifications and Wet Weather Pumping Station	LS	15 MGD	\$25,575,000	\$	25,575,000	20 MGD	\$26,350,000	\$	26,350,000
Flow Equalization Basin	LS	8.1 MG	\$30,132,000	\$	30,132,000	17.5 MG	\$62,387,500	\$	62,387,500
Common Facilities (2010 CDM Study)	LS	1	\$11,470,000	\$	11,470,000	1	\$11,470,000	\$	11,470,000
Jordan Creek Parallel Sewer	1,450 LF	30-in	\$1,240	\$	1,798,000	30-in	\$1,240	\$	1,798,000
		***************************************	Subtotal Shared Costs (Calibrated Model)	s	68,975,000	(Mo	Subtotal Shared Costs odified-Calibrated Model)	\$	102.005,500
Emmaus Trunk Parallel Sewer	9,400 LF	30-36-in	\$1,085	\$	10,199,000	30-36-in	\$1,085	\$	10,199,000
Emmaus Trunk Parallel Sewer	1,500 LF	42-in	\$1,535	\$	2,301,750	42-in	\$1,535	\$	2,301,750
		-	Subtotal WLSP Costs	_	40 500 750		Subtotal WLSP Costs	_	40.500.750

(Calibrated Model)

12,500,750

(Modified-Calibrated Model)

Selected Approach

- Implement improvements in two phases
- Phase 1 improvements to convey 120 mgd to the KIWWTP
 - Flow equalization or blending at the KIWWTP
- Phase 2 implement remaining Alternative 10 improvements
 - Refined in size and scope based on the effectiveness of Phase 1 improvements as well as RDII reduction and other improvements implemented by the signatories and WLSP

Phase 1 Improvements

- Phase 1 Improvements to City-owned facilities
 - 4 million gallon flow equalization tank at KIWWTP or blending
 - Influent screening system at KIWWTP
 - Trout Creek parallel Sewer
 - W. Tioga Street sewer partial upsize
 - Replace impellers of the KIWWTP's main influent pumps
 - Planning-level cost: approximately \$31M
- Other key Phase 1 improvements
 - Extend Park Pump Station force main to the KIWWTP
 - Rehabilitate and restore capacity of Park Pump Station to approximately 24 mgd

Phase 2 Improvements

- Phase 2 Improvements to City-owned facilities
 - Significant additional flow equalization at KIWWTP or blending
 - Significant expansion of influent pumping capacity at KIWWTP
 - Expansion of Influent screening system at KIWWP
 - Jordan Creek parallel Sewer
 - Planning-level cost: approximately \$80M (modified calibration)
- Other key Phase 2 improvements
 - Significant expansion of PPS pumping and force main capacity
 - Emmaus trunk parallel sewer

- Blending Objective
 - Reduce cost by eliminating or reducing size of KIWWTP flow equalization basin
 - Comply with NPDES Instant. Maximum Permit Limits
 - TSS 60 mg/L
 - CBOD 40 mg/L
 - NH3-N 30 mg/L (winter)
 - NH3-N 10 mg/L (summer)
 - Fecal Coliform 1,000/100 ml (summer)
 - Fecal Coliform 10,000/100 ml (winter)

Approach

- Evaluated feasibility in 10 mgd increments
 - 90 mgd through 180 mgd
- Feasibility criteria
 - Ability to comply with all NPDES effluent limits
 - Available space to construct required improvements
- Budgetary capital cost estimates developed for feasible blending scenarios

City of Allentown, PA Division of Water Resources

SITE KEY

A-1	Main Pumping Station
A-2	Auxiliary Pumping Station
В	Aerated Grit Chambers and Comminutors
C-1 to C-4	Primary Settling Tanks
D	Primary Sludge Pumping Station
E-1 to E-4	Plastic Media Trickling Filters
F	Intermediate Pumping Station
G-1 to G-3	Intermediate Settling Tanks
н	Rock Media Trickling Filters
I-1 to I-10	Final Settling Tanks
J	Chlorine Contact Tank
K	Chlorination Building
L	Sludge Holding Tanks
M	Sludge Thickening Tanks
N-1 to N-2	Primary Sludge Digesters
0	Secondary Sludge Digesters
P	Digestion Control Building
Q	Dewatering Building
R	Effluent Pumps

FEBRUARY 2011

COA Blending Analysis

Feasible blending scenarios

FLOW	FINE SCREENS	ADDITIONAL	ADDITIO	NAL PST	ADDITIONAL	NEW EFFLUENT	
MGD		AGC	W/O CEPT	W/CEPT	ССТ	PUMPS	
80 N/A		N/A	N/A	N/A	N/A	N/A	
90	3-4.5'wx10'H	1	N/A	N/A	N/A	2x30 MGD	
100	3-4.5'wx10'H	1	1-3300 SF	N/A	N/A	3x30 MGD	
110	3-6.0'wx10'H	1	2-3300 SF	N/A	N/A	4x30 MGD	
120	3-6.0'wx10'H	1	3-3300 SF	N/A	N/A	5x30 MGD	
130	3-6.0'wx10'H	1	4-3300 SF	N/A	N/A	3x30 mgd & 2x40 MGD	
140	3-6.0'wx10'H	2	N/A	4-3300 SF	40'Wx32'L	2x30 mgd & 3x40 MG	
150	3-7.5'wx10'H	2	N/A	4-3300 SF	40'Wx64'L	1x30 MGD & 4x40 MGD	
160	3-7.5'wx10'H	2	N/A	4-3300 SF	40'Wx96'L	5x40 MGD	
170	3-7.5'wx10'H	2	N/A	5-3300 SF	40'Wx128'L	2x40 MGD & 3x45 MGD	
180	3-7.5'wx10'H	2	N/A	5-3300 SF	40'Wx160'L	5x45 MGD	

Blending Capital Cost Estimates

FLOW MGD	FINE SCREENING	ADDITIONAL	ADDITIONAL PST		ADDITIONAL	NEW EFFLUENT	TOTAL
		AGC	w/o CEPT	w/ CEPT	ССТ	PUMPS	CAPITAL COST
80	N/A	N/A	N/A	N/A	N/A	N/A	N/A
90	\$5,443,000	\$1,360,000	N/A	N/A	N/A	\$1,369,000	\$8,172,000
100	\$5,443,000	\$1,360,000	\$2,579,000	N/A	N/A	\$2,053,000	\$11,435,000
110	\$5,715,000	\$1,360,000	\$4,581,000	N/A	N/A	\$2,738,000	\$14,394,000
120	\$5,715,000	\$1,360,000	\$6,580,000	N/A	N/A	\$3,423,000	\$17,078,000
130	\$5,715,000	\$1,360,000	\$9,005,000	N/A	N/A	\$4,251,000	\$20,331,000
140	\$5,715,000	\$2,720,000	N/A	\$9,400,000	\$781,000	\$4,283,000	\$22,899,000
150	\$5,987,000	\$2,720,000	N/A	\$9,400,000	\$1,273,000	\$4,914,000	\$24,294,000
160	\$5,987,000	\$2,720,000	N/A	\$9,400,000	\$1,700,000	\$5,246,000	\$25,053,000
170	\$5,987,000	\$2,720,000	N/A	\$11,400,000	\$2,191,000	\$5,889,000	\$28,187,000
180	\$5,987,000	\$2,720,000	N/A	\$11,400,000	\$2,653,000	\$6,319,000	\$29,079,000

- Example comparison
 - Planning-level Cost of Round 2 Alternative 10 FEB
 - \$62 million (modified calibration)
 - Planning-Level Cost of 160 mgd blending facilities
 - \$25 million
 - Blending potential cost savings
 - \$37 million
 - Achieves compliance with maximum daily effluent limits
 - Provides additional operational benefits

Questions